Preventing Roof Leaks in Blue Bell: A Guide

Preventing Roof Leaks in Blue Bell: A Guide

Roof-end Tile with Human Face Motif

Preventing Roof Leaks in Blue Bell: A Guide


Ah, the charming town of Blue Bell!

Preventing Roof Leaks in Blue Bell: A Guide - Dutch gable roof

  1. Dutch gable roof
  2. Board roof
  3. Asphalt shingle
  4. Roof shingle
  5. Tented roof
Known for its picturesque landscapes and cozy homes, its a place where one would least expect to encounter the pesky problem of roof leaks. roofing contractor blue bell . But alas, even in this serene locale, Mother Nature can be quite unpredictable. So, how can homeowners ensure they're not caught off guard by an unexpected drip-drip-drip during a rainstorm? Let's dive into some practical tips for preventing roof leaks in Blue Bell.


First and foremost, regular inspections are key.

Preventing Roof Leaks in Blue Bell: A Guide - Dutch gable roof

  • Shed roof
  • Shindler
  • [Catalogue] Celadon Roofing Tile Co
  • Flat roof
Now, Im not saying you need to climb up there every week, but a seasonal check-up (especially before winter) can make a world of difference. Its often the little things that go unnoticed-like a missing shingle or a clogged gutter-that lead to bigger problems. And trust me, nobody wants to deal with the aftermath of water damage, especially when it could have been avoided.


Speaking of gutters, they're often underestimated in their importance. A clogged gutter means waters not flowing where it should, which can lead to pooling on your roof. Over time, that pooled water can find its way into the smallest of crevices, and voila, a leak is born. So, do yourself a favor and keep those gutters clean! It's a simple task that can save a lot of headaches down the line.


Now, lets talk about ventilation. It might not seem connected, but proper attic ventilation plays a huge role in roof health.

Preventing Roof Leaks in Blue Bell: A Guide - List of roof shapes

  1. Roof-end Tile with Human Face Motif
  2. List of roof shapes
  3. Roofer
Without it, heat and moisture can build up, leading to shingle damage and-you guessed it-leaks. So, make sure your attics got adequate airflow. If you're unsure, it's worth consulting a professional who can give you peace of mind.


Oh, and dont forget about those pesky tree branches! Overhanging limbs can scratch and damage shingles, and during a storm, they might even break and cause significant harm. Trim them back regularly to keep your roof in tip-top shape.


It's also wise to invest in quality roofing materials. Sure, it might be tempting to go for the cheapest option, but remember, you get what you pay for. High-quality materials are designed to withstand the elements better and last longer. So, in the long run, you're not saving money by skimping on quality-you're potentially setting yourself up for future repairs.


Finally, if you do spot a potential problem, don't wait to address it. Small issues can quickly escalate if neglected. And while DIY repairs might be tempting, there's no substitute for the expertise of a professional roofer.

Preventing Roof Leaks in Blue Bell: A Guide - Roof-end Tile with Human Face Motif

  1. Saddle roof
  2. mathematical tile
  3. Roofing
  4. Tile
After all, it's their job to ensure your roof is in excellent condition.


In summary, preventing roof leaks in Blue Bell isn't rocket science, but it does require a bit of diligence. Regular inspections, clean gutters, proper ventilation, trimmed trees, and quality materials are all part of the recipe for a leak-free roof. And when in doubt, don't hesitate to call in the experts. After all, isn't it better to be safe than sorry?

Roofing Contractor Blue Bell

Clay tile roofs in Dinkelsbühl, Germany

Roof tiles are overlapping tiles designed mainly to keep out precipitation such as rain or snow, and are traditionally made from locally available materials such as clay or slate. Later tiles have been made from materials such as concrete, glass, and plastic.

Roof tiles can be affixed by screws or nails, but in some cases historic designs utilize interlocking systems that are self-supporting. Tiles typically cover an underlayment system, which seals the roof against water intrusion.[1]

Categories

[edit]

There are numerous profiles, or patterns, of roof tile, which can be separated into categories based on their installation and design.

Shingle / flat tiles

[edit]
Flat tiles on the Church of St Andrew in Greensted, Ongar, Essex, England

One of the simplest designs of roof tile, these are simple overlapping slabs installed in the same manner as traditional shingles, usually held in place by nails or screws at their top. All forms of slate tile fall into this category. When installed, most of an individual shingle's surface area will be covered by the shingles overlapping it. As a result of this, flat tiles require more tiles to cover a certain area than other patterns of similar size.[2]

These tiles commonly feature a squared base, as is the case with English clay tiles, but in some cases can have a pointed or rounded end, as seen with the beaver-tail tile common in Southern Germany.

Imbrex and tegula

[edit]
Edges of each tegula (a) are covered by curved imbrex (b)

The imbrex and tegula are overlapping tiles that were used by many ancient cultures, including the Greeks, Romans, and Chinese. The tegula is a flat tile laid against the surface of the roof, while the imbrex is a semi-cylindrical tile laid over the joints between tegulae.

In early designs tegula were perfectly flat, however over time they were designed to have ridges along their edges to channel water away from the gaps between tiles.[3]

Mission / Monk and Nun tiles

[edit]
Mission tile in Spain

Similar to the imbrex and tegula design of tile, mission tiles are a semi-cylindrical two-piece tile system, composed of a pan and cover. Unlike the imbrex and tegula both the pan and cover of Mission tile are arched.

Early examples of this profile were created by bending a piece of clay over a worker's thigh, which resulted in the semi-circular curve. This could add a taper to one end of the tile.

Pantiles / S tiles

[edit]
Pantiles in a "Spanish" pattern

Pantiles are similar to mission tiles except that they consolidate the pan and cover into a single piece. This allows for greater surface area coverage with fewer tiles, and fewer cracks that could lead to leakage.

These tiles are traditionally formed through an extruder. In addition to the S-shaped Spanish tiles, this category includes the Scandia tiles common to Scandinavia and Northern Europe.

Interlocking tiles

[edit]
Interlocking Mangalore tiles in the Ludowici pattern, Tamil Nadu, India

Dating to the 1840s, interlocking tiles are the newest category of roofing tile and one of the widest ranging in appearance.[4] Their distinguishing feature is the presence of a ridge for interlocking with one another. This allows them to provide a high ratio of roof area to number of tiles used. Many distinct profiles fall into this category, such as the Marseilles, Ludowici, and Conosera patterns.[5]

Unlike other types of tiles, which can in some cases be produced through a variety of methods, interlocking tiles can only be manufactured on a large scale with a tile press.

In many cases interlocking tile is designed to imitate other patterns of tile, such as flat shingles or pantiles, which can make it difficult to identify from the ground without inspecting an individual tile for a ridge.[6]

History as a vernacular material

[edit]

The origins of clay roofing tiles are obscure, but it is believed that it was developed independently during the late Neolithic period in both ancient Greece and China, before spreading in use across Europe and Asia.[7]

Europe

[edit]

Greece

[edit]

Fired roof-tiles have been found in the House of the tiles in Lerna, Greece.[8][9] Debris found at the site contained thousands of terracotta tiles which had fallen from the roof.[10] In the Mycenaean period, roof tiles are documented for Gla and Midea.[11]

The earliest roof tiles from the Archaic period in Greece are documented from a very restricted area around Corinth, where fired tiles began to replace thatched roofs at two temples of Apollo and Poseidon between 700 and 650 BC.[12] Spreading rapidly, roof tiles were found within fifty years at many sites around the Eastern Mediterranean, including Mainland Greece, Western Asia Minor, and Southern and Central Italy.[13] Early Greek roof-tiles were of the imbrex and tegula style.[14] While more expensive and labour-intensive to produce than thatch, their introduction has been explained by their greatly enhanced fire-resistance which gave desired protection to the costly temples.[15]

The spread of the roof-tile technique has to be viewed in connection with the simultaneous rise of monumental architecture in Ancient Greece.[citation needed] Only the newly appearing stone walls, which were replacing the earlier mudbrick and wood walls, were strong enough to support the weight of a tiled roof.[16] As a side-effect, it has been assumed that the new stone and tile construction also ushered in the end of 'Chinese roof' (Knickdach) construction in Greek architecture, as they made the need for an extended roof as rain protection for the mudbrick walls obsolete.[17]

A Greek roof tile was responsible for the death of Molossian Greek king Pyrrhus of Epirus in 272 BC after a woman threw one at the king's head as he was attacking her son.[18]

Roman Empire

[edit]

Roof tiles similar to Greek designs continued to be used through the reign of the Roman Empire. They were a common feature in Roman cities, despite the fact that a single tile would often cost the equivalent of 1.5 day's wages. Tiles were commonly used as improvised weapons during citizen uprisings, as they were one of few such weapons available to city-dwellers of the time.[19]

Roman imbrex and tebula roofs generally avoided the use of nails and were instead held in place through gravity, it is possible that this was one of the reasons their tile was found on low pitched roofs.[20]

The Romans spread the use and production of roofing tile across their colonies in Europe, with kilns and tile-works constructed as far west and north as Spain and Britain. Early records suggest that brick and tile-works were considered under the control of the Roman state for a period of time.[21]

Northern Europe

[edit]

It is believed that the Romans introduced the use of clay roof tile to Britain after their conquest in AD 43. The earliest known sites for the production of roof tile are near the Fishbourne Roman Palace. Early tiles produced in Britain followed the Roman imbrex and tebula style, but also included flat shingle tiles, which could be produced with less experience.[21]

Tiles typical of Scandinavian style in Lahälla, Lysekil Municipality, Sweden

For a while after the dissolution of the Roman Empire, the manufacture of tile for roofs and decoration diminished in Northern Europe. In the twelfth century clay, slate, and stone roofing tile began to see more use, initially on abbeys and royal palaces. Their use was later encouraged within Medieval towns as a means of preventing the spread of fire. Simple flat shingle tiles became common during this period due to their ease of manufacture.[22]

Scandinavian roof tiles have been seen on structures dating to the 1500s when city rulers in Holland required the use of fireproof materials. At the time, most houses were made of wood and had thatch roofing, which would often cause fires to spread quickly. To satisfy demand, many small roof-tile makers began to produce roof tiles by hand. The Scandinavian style of roof tile is a variation on the pantile which features a subdued "S" shape reminiscent of an ocean wave.[23]

In Britain, tiles were also used to provide weather protection to the sides of timber frame buildings, a practice known as tile hanging.[24] Another form of this is the so-called mathematical tile, which was hung on laths, nailed and then grouted. This form of tiling gives an imitation of brickwork and was developed to give the appearance of brick, but avoided the brick taxes of the 18th century.[25]

Asia

[edit]
Glazed tile and figures on a roof in Shenyang, Liaoning Province, China

China

[edit]

Clay roof tiles are the main form of historic ceramic tilework in China, due largely to the emphasis that traditional Chinese architecture places on a roof as opposed to a wall.[26] Roof tile fragments have been found in the Loess Plateau dating to the Longshan period, showing some of the earliest pan and cover designs found in Asia.[7] During the Song dynasty, the manufacture of glazed tiles was standardized in Li Jie's Yingzao Fashi.[27] In the Ming dynasty and Qing dynasty, glazed tiles became ever more popular for top-tier buildings, including palace halls in the Forbidden City and ceremonial temples such as the Heavenly Temple.

Chinese architecture is notable for its advancement of colored gloss glazes for roof tiles. Marco Polo made note of these on his travels to China, writing:

The roof is all ablaze with scarlet and green and blue and yellow and all the colors that are, so brilliantly varnished that it glitters like crystal and the color of it can be seen from far away.[26]

Japan

[edit]

Japanese architecture includes Onigawara as roof ornamentation in conjunction with tiled roofs. They are generally roof tiles or statues depicting a Japanese ogre (oni) or a fearsome beast. Prior to the Heian period, similar ornaments with floral and plant designs "hanagawara" preceded the onigawara.

Onigawara are most often found in Buddhist temples. In some cases the ogre's face may be missing.[28]

Korea

[edit]
Celadon glazed roof tile from the Goryeo dynasty

In Korea the use of tile, known as giwa, dates back to the Three Kingdoms period, but it was not until the Unified Silla period that tile roofing became widely used. Tiles were initially reserved for temples and royal buildings as a status symbol.

The designs used on giwa can have symbolic meanings, with different figures representing concepts such as spirituality, longevity, happiness, and enlightenment. The five elements of fire, water, wood, metal and earth were common decorations during the Three Kingdoms period, and during the Goryeo dynasty Celadon glaze was invented and used for the roof tiles of the upper class.

Many post-war Korean roofs feature giwa and a common ornamental symbol is the Mugunghwa, South Korea's national flower.[29]

India

[edit]
Golden roof tiles on inner-shrine of Nataraja temple, 10th century, India

Neolithic sites such as Alamgirpur in Uttar Pradesh provide early evidence of roof tiles.[30] They became more common during the iron age and the early historic period during the first millennium BCE.[31] These early roof tiles were flat tiles and rounded or bent tiles, a form that was widespread across the Ganga Valley and the Indian Peninsula, suggesting that it was an essential architectural element of this period.[31] This early form of roof tiles also influenced roof tiles of neighboring Nepal and Sri lanka.[31]

Metal roof tiles made of gold, silver, bronze and copper are restricted to religious architecture in South Asia. A notable temple with golden roof tiles is the Nataraja temple of Chidambaram, where the roof of the main shrine in the inner courtyard has been laid with 21,600 golden tiles.[32]

Southeast Asia

[edit]
Red and yellow glazed clay shingle tiles on Wat Phra That Doi Suthep, Chiang Mai, Thailand

Tapered flat roof tiles have been used in Thailand, Laos and Cambodia since at least the 9th or 10th century CE, with widespread adoption after the 14th century, commonly to roof traditional Buddhist temple architecture.[33] These shingle tiles have flat elongated bodies with a bent upper end for hooking at the roof and a pointed lower end.[33]

In Indonesia, approximately 90% of houses in Java island use clay roof tile.[34] Traditionally, Javanese architecture use clay roof tiles.[35] However, it was not until late 19th century that houses of commoners in Java and Bali started using roof tiles.[citation needed] The Dutch colonial administration encouraged the usage of roof tiles to increase hygiene.[citation needed] Before the mass usage of roof tiles in Java and Bali, commoners of both of islands used thatched or nipa roof like the inhabitants of other Indonesian islands.[citation needed]

In the Philippines, aside from various thatching methods, a native roof tiling technique is the kalaka which uses halved bamboo sections fitted together.[36] During the Spanish colonial era of the Philippines, colonial-era bahay na bato architecture (which mixes native and Spanish architecture) also extensively used the Spanish-style Monk and Nun tiles, known natively as teja de curva.[37]

North America

[edit]

Roof tiles were introduced to North America by colonizers from Europe, and typically were traditional designs native to their original country.

Pieces of clay roof tile have been found in archeological excavations of the English settlement at Roanoke Colony dating to 1585, and in later English settlements in Jamestown, Virginia and St. Mary's, Maryland. Spanish and French colonists brought their designs and styles of roofing tile to areas they settled along what are now the southern United States and Mexico, with Spanish-influenced tile fragments found in Saint Augustine, Florida, and both Spanish and French styles used in New Orleans, Louisiana.

Mission San Antonio de Padua, California, with mission style roof around 1880

Dutch settlers first imported tile to their settlements in what are now the Northeastern United States, and had established full-scale production of roofing tiles in the upper Hudson River Valley by 1650 to supply New Amsterdam.

Clay roof tiles were first produced on the West Coast at the Mission San Antonio de Padua in 1780. This Spanish-influenced style of tile remains in common use in California.

One notable site of roof tile production was Zoar, Ohio, where a religious sect of German Zoarites formed a commune in 1817 and produced their own roofs in a handmade German beaver-tail style for several decades.[38]

From the 1700s through early 1800s, clay roofing tile was a popular material in colonial American cities due to its fire-resistance, especially after the establishment of urban fire-codes.

In spite of improving manufacturing methods, clay tile fell out of favor within the United States around the 1820s, and cheaper alternatives such as wood shingle and slate tile became more common.[39]

Post-vernacular history

[edit]

Clay tiles

[edit]

Beginning around the mid-1800s, expanding industrial production allowed for more efficient and large-scale production of clay roofing tile. At the same time, increasing city growth led to rising demand for fireproof materials to limit the danger of urban fires, such as the Great Chicago Fire of 1871.

These conditions combined to bring a significant expansion in the use of roof tile, with a shift from regional and hand-produced tile to patented and machine-made tile sold by large-scale companies.[40]

Gilardoni tiles

[edit]
The Gilardoni Brothers' first interlocking roof tile pattern, sometimes referred to as a Heart tile

The Gilardoni brothers of Altkirch, France were the first to develop a functional interlocking roof tile.[41]

The Gilardonis' design marked a significant shift in the design of roofing tile. Prior to this tile most roofing tile profiles could be hand made without the need for large-scale machines, but the new interlocking tiles could only be produced with a tile press and were more cost effective than comparable vernacular styles. Through the rest of the 19th century many companies began refining and developing other versions of interlocking tiles.[41]

The Gilardoni brothers began making their design in 1835 and took out a patent on their first design of interlocking clay tile in 1841, with a new design patented ten years later. The Gilardonis shared their patent with six other French tile manufacturers between 1845 and 1860, contributing greatly to the spread of interlocking tile usage throughout France and Europe. Their company built additional factories and continued to operate until 1974.[41][42]

Marseilles tiles

[edit]
An 1861 illustration of Marseilles tile

Another popular early interlocking tile pattern was the Marseilles design invented by the Martin Brothers in Marseille, France as early as the 1860s. The Marseilles tile pattern is distinguished from other designs by its diagonal notches on its side rebate, as well as the teardrop-shaped end of its middle-rib.[41]

While the Martin Brothers invented the design, its widespread use was more due to the pattern's adoption and international production after its original patent expired. The Marseilles tile was widely exported, especially in European colonies in South and Central America, Africa, and Australia.[41]

French-manufactured Marseilles tiles were imported to Australia by 1886 and New Zealand by 1899.[43][44] Many New Zealand railway stations were built with them, including Dunedin.[45][46] Large scale production of Marseilles tiles by Wunderlich began in Australia during war-time import shortages in 1916.[43] From 1920, factories at Pargny-sur-Saulx exported tiles to England.[47] By 1929 Winstone were making them at Taumarunui, in a tile works established about 1910, which was replaced by Plimmerton in 1954.[48][49][50][51]

Ludowici tiles

[edit]
A roofer installing Ludowici pattern tile, also known as French, around the turn of the century

In 1881 Wilhelm Ludowici developed his own interlocking tile, an improvement upon the earlier designs which incorporated a double-rebate on the side, double head-fold at the top of the tile, and a strategically designed surface pattern for repelling water and melting snow from the top of the roof. Unlike other designs, Ludowici included his tile's central rib for functional reasons rather than aesthetic.[41]

Ludowici's design was mass produced in Germany and later the United States by the Ludowici Roof Tile company, who advertised the pattern as French tile.[52]

Many tiles found in the Mangalore region of India are derived from or made in this pattern. Clay roof tiles had been produced in the region since missionary Georg Plebst set up the first factory at Mangalore, Karnataka, India, in 1860 after finding large deposits of clay by the banks of the Gurupura and Netravati rivers. The initial tiles they produced were similar to the Gilardoni brothers' design, but later tiles adopted Ludowici's pattern. Over the years ten companies produced Mangalore tiles, which were exported around the Indian Ocean and subcontinent.[53]

Conosera tiles

[edit]
Conosera tile on the Lake County Courthouse, Crown Point, Indiana

The Conosera tile was developed by George Herman Babcock in 1889, and was unique due to its diagonally interlocking structure and design allowing for more installation flexibility than other interlocking tile designs. Babcock designed the pattern with towers and spires in mind, since his design significantly reduced the number of graduated tile sizes needed to roof a cone.[54]

Conosera was initially manufactured and sold by the Celadon Terra Cotta Company of Alfred, New York. After a merger formed the Ludowici-Celadon Company in 1906 the group continued to produce Conosera tile for special orders.[55]

Concrete tiles

[edit]

The earliest known concrete tiles were developed in the 1840s by Adolph Kroher. While visiting Grassau, Bavaria, Kroher learned about locals' use of regional minerals to create stucco and began to experiment with the material, developing a diamond-shaped interlocking pattern of concrete tile which became one of his company's primary profiles. He also manufactured a concrete pantile similar to the Scandinavian style of clay tile.

Modern concrete roof tiles

In order to reduce the high shipping cost for his tile, Kroher adopted a 'do-it-yourself' method of tile manufacture for some time, where he sold a supply of cement and the necessary tools for a home-builder to create their own tiles. This had the disadvantage that cement was prepared by amateurs and did not always have consistent or correct mixing preparation.

Concrete tiles became more widespread in Germany over the next few decades after manufacturers such as Jörgen Peter Jörgensen and Hartwig Hüser began producing interlocking and overlapping designs.[56]

The concrete tile industry grew and spread internationally through the early 20th century, driven by its cheapness to produce at scale.[57] Researchers considered concrete tile inferior to clay tile, largely due to its fundamental weaknesses of porosity and color impermanence.[58][59]

Glass tiles

[edit]
A glass tile among clay tiles

Glass tiles, also referred to as skylight tiles, are used as accessories alongside clay roof tiles. These were first developed in the 1890s and designed to allow light into spaces roofed with interlocking tiles, such as warehouses and factories.[41]

It is uncommon for a roof to be completely covered in glass tiles however there are a few exceptions, such as on the tower of Seattle's King Street Station.[60]

Plastic tiles

[edit]
A synthetic or composite tile roof, showing fading and delamination from exposure to sun.

Plastic tiles, marketed as composite or synthetic tiles, became available towards the end of the 20th century. Their exact invention date is unclear, but most became available around the year 2000.[61][62]

Plastic tiles are generally designed to imitate slate or clay tiles, and achieve their color through synthetic dyes added to the plastic. They are produced through injection molding.[63]

Solar tiles

[edit]

Dow Chemical Company began producing solar roof tiles in 2005, and several other manufacturers followed suit. They are similar in design to conventional roof tiles but with a photovoltaic cell within in order to generate renewable electricity.

In 2016 a collaboration between the companies SolarCity and Tesla produced a hydrographically printed tile which appears to be a regular tile from street level but is transparent to sunlight when viewed straight on.[64] Tesla later acquired SolarCity and the solar shingle product was described as "a flop" in 2019.[65] The company later dropped their claim that their tiles were three times as strong as standard tiles, without specifying why they backed away from the claim.[66]

Fittings and trim

[edit]

Tile roofs require fittings and trim pieces to seal gaps along the ridge and edges of a roof.

Ridge pieces

[edit]
Ridge pieces on roof in Heidelberg, Germany

Ridge pieces are laid upon the very top ridge of a roof, where the planes of a pitched roof meet. This section is usually parallel to the ground beneath.

The tiles which cover this section of the roof have to direct water away from the top of the ridge and onto either side of the pitched roof below.[67]

Terminals

[edit]
Concrete terminal on roof in Porto Santo Island, Portugal

Terminals are ridge tile fittings that are used as an endcap on the gable end or apex of a roof. In some cases these can be highly decorative, taking the form of a sculpture or figurine, while in others they can be more practical and architectural in nature.

Graduated tiles

[edit]

Graduated roof tiles are tiles designed to "graduate" in size from top to bottom, with smaller tiles at the top and larger ones at the bottom. They are necessary when installing a tile roof on a tower, cone, or dome and need to be specially designed for each roof they are used on for effective functionality.

Antefix

[edit]
Antefix

An antefix is a vertical block which terminates and conceals the base of a mission, imbrex and tegula, or pantile roof.[68]

They are commonly a fixture of Greek and Roman tile roofs and can often be highly ornamental.

Under eave tiles

[edit]
Painted under-eave tile, Sri Lanka, 5th century

Tiles, often ornamental, applied beneath the eave of a roof structure. Found in temple architecture of Sri Lanka, among other locations.

Characteristics

[edit]

Durability

[edit]

The durability of roofing tiles varies greatly based on material composition and manufacture. Durability is directly related to three factors; a resistance to chemical decomposition, a low porosity, and a high breaking strength.

Chemical decomposition

[edit]

Clay and slate tiles are stable materials and naturally resistant to chemical decomposition, however plastic composite tiles and concrete tiles will experience inevitable decay over time. As a result of this, high-quality clay and slate tiles have a proven lifespan of over 100 years, whereas synthetic and concrete tiles usually have a practical lifespan of 30–50 years.[69][70][71] In the case of synthetic plastic tiles, this is purely an estimation since the oldest products on the market date to around 2000.[62] The main cause of plastic tile decay is exposure to ultraviolet radiation, which weakens the chemical bonds of the material and causes the tiles to become more brittle over time.[72][73]

A common effect seen in cement roof tiles is efflorescence, which is caused by the presence of free lime within concrete. This lime reacts with water to form calcium hydroxide, which creates a chalky deposit on the outside of the tiles. While not detrimental to the strength or durability of the cement tiles, this effect is considered unappealing.[74]

Porosity

[edit]

Tiles with a porosity above 2% allow for intrusion and absorption of water, which can be detrimental in climates with freeze-thaw conditions or salt air intrusion. During a freeze-thaw cycle, water that infiltrates a tile will see volume expansions of 9% upon freezing, which exerts pressure within any pores it manages to enter and causes cracks to grow. When the ice melts, water spreads further into those cracks and will then apply more stress to them upon the next freeze.[75] A similar effect can be seen in areas near the ocean that experience salt-air intrusion, which can lead to salt crystal permeation and expansion.[76]

Clay tile porosity can range greatly depending on quality of production, but some manufacturers can achieve less than 2% moisture absorption. Concrete roof tiles tend to feature around 13% moisture absorption, which requires periodic resealing every 3–7 years to avoid critical failure.[77][71] The inherent porosity of cement requires that cement tiles are made very heavy and thick, as a result they have continuously been one of the heaviest roofing materials in the market.[78]

It is commonly believed that a porous clay tile can be waterproofed through the application of a glaze; however studies have shown that this is not the case. If a clay body contains significant pores, water will permeate them over time regardless of exterior coating.[79]

Breaking strength

[edit]

The breaking strength of clay tiles can vary greatly by manufacturer, depending on a combination of factors such as their firing temperature, specific clay composition, and length of the firing cycle. Despite the common conception of clay tiles being fragile, higher-grade manufacturers produce tiles with breaking strengths ranging from 700 to 1500 pounds.[80]

The breaking strength of plastic roof tiles varies greatly depending on temperature. Unlike ceramics or metals, plastics have glass transition temperatures that fall within the range of winter temperatures, often resulting in them becoming extremely brittle during colder periods.[81]

Color

[edit]

Clay roof tiles historically gained their color purely from the clay that they were composed of, resulting in largely red, orange, and tan colored roofs. Over time some cultures, notably in Asia, began to apply glazes to clay tiles, achieving a wide variety of colors and combinations.

Glazed roof tiles arranged in a pattern on St. Stephen's Cathedral, Vienna, Austria

Originally, most color variation on matte clay tiles was caused by variation in kiln firing temperature, kiln atmospheric conditions, and in some cases reductive firing. Many producers have shifted away from this process since low firing temperatures typically result in a higher porosity and lower breaking strength.

Engobes are now commonly used to replicate the appearance of historic firing variation, using a thin colored ceramic coating which chemically bonds to the tile to provide any range of matte colors to the fired tiles while allowing consistent firing conditions. Glazes are used when a shinier gloss appearance is desired. Like their clay base, both engobes and glazes are fully impervious to color fading regardless of UV exposure, which makes them unique among artificial colorants.[82]

The color of slate tiles is a result of the amount and type of iron and organic material that are present, and most often ranges from light to dark gray. Some shades of slate used for roofing can be shades of green, red, black, purple, and brown.[83]

Cement tiles typically are colored either through the use of a pigment added to the cement body, or through a concentrated slurry coat of cement-infused pigment on the outside of the tiles. Due to the simple production process and comparatively low firing temperature, cement tiles fade over time and often require painting to restore a "new" appearance.[84]

Plastic tiles are colored through the incorporation of synthetic dyes added to them during molding.[63] As a result of their reactive chemical composition they can suffer degradation from UV rays and fade after a few years of use.[85]

[edit]

See also

[edit]

References

[edit]
  1. ^ "Shingle Tile Installation Manual" (PDF). Ludowici Roof Tile. 2022.
  2. ^ "Shingle Tile Installation Manual" (PDF). Ludowici Roof Tile. 2022.
  3. ^ Warry, Peter (2006). Tegulae Manufacture, Typology and Use in Roman Britain. Oxford, England: Archaeopress. ISBN 1-84171-956-0.
  4. ^ Lewis, Miles (24 February 2022). "Marseille roofing tiles". The University of Melbourne. Retrieved 24 September 2023.
  5. ^ [Catalogue] Celadon Roofing Tile Co. Ludowici-Celadon Company. 1909. p. 7.
  6. ^ "Interlocking Tile Installation Manual" (PDF). Ludowici Roof Tile. 2022.
  7. ^ a b Yijing Xu; Jing Zhou; Jianlong Zhao; Guoke Chen; Wen Li; Mingzhi Ma; Francesca Monteith; Shengyu Liu; Minghao Peng; Andrew Bevan; Hai Zhang (19 May 2023). "Reconstructing the earliest known composite-tiled roofs from the Chinese Loess Plateau". Sci Rep. 13 (1): 8163. Bibcode:2023NatSR..13.8163X. doi:10.1038/s41598-023-35299-x. PMC 10199015. PMID 37208475.
  8. ^ Joseph W. Shaw, The Early Helladic II Corridor House: Development and Form, American Journal of Archaeology, Vol. 91, No. 1. (Jan. 1987), pp. 59–79 (59)
  9. ^ John C. Overbeck, “Greek Towns of the Early Bronze Age”, The Classical Journal, Vol. 65, No. 1. (Oct. 1969), pp. 1–7 (5)
  10. ^ J. L. Caskey, "Lerna in the Early Bronze Age", American Journal of Archaeology, Vol. 72, No. 4. (Oct. 1968), pp. 313-316 (314)
  11. ^ Ione Mylonas Shear, "Excavations on the Acropolis of Midea: Results of the Greek-Swedish Excavations under the Direction of Katie Demakopoulou and Paul åström", American Journal of Archaeology, Vol. 104, No. 1. (Jan. 2000), pp. 133–134
  12. ^ Örjan Wikander, p. 285
  13. ^ Örjan Wikander, p. 286
  14. ^ Rostoker; Gebhard, William; Elizabeth (1981). "The archaic roof tiles at Isthmia: a re-examination" (PDF). Journal of Field Archaeology. doi:10.1179/009346981791505076. Archived from the original (PDF) on 2017-08-10.cite journal: CS1 maint: multiple names: authors list (link)
  15. ^ Örjan Wikander, p. 289
  16. ^ Marilyn Y. Goldberg, p. 309
  17. ^ Marilyn Y. Goldberg, p. 305
  18. ^ Barry, William D. (1996). "Roof Tiles and Urban Violence In the Ancient World". Greek, Roman and Byzantine Studies. Duke University: 55.
  19. ^ Barry, William D. (1996). "Roof Tiles and Urban Violence In the Ancient World". Greek, Roman and Byzantine Studies. Duke University: 60.
  20. ^ Van Lemmen, Hans (2013). 5000 Years of Tiles. Smithsonian Books. p. 23.
  21. ^ a b McWhirr, Alan David (1983). The production and distribution of brick and tile in Roman Britain (thesis). University of Leicester. Retrieved 24 September 2023.
  22. ^ Van Lemmen, Hans (2013). 5000 Years of Tiles. Smithsonian Books. p. 92.
  23. ^ Donnely, Marian C. (1991). "6". Architecture in the Scandinavian Countries. The MIT Press. p. 54.
  24. ^ Stephen Emmitt; Christopher A. Gorse (5 February 2013). Barry's Introduction to Construction of Buildings. John Wiley & Sons. p. 208. ISBN 978-1-118-65858-1.
  25. ^ RW Brunskill, Illustrated Handbook of Vernacular Architecture (1970:58-61)
  26. ^ a b Van Lemmen, Hans (2013). 5000 Years of Tiles. Smithsonian Books. p. 29.
  27. ^ 李誡; 陶湘; 朱啓鈐 (1925). "Glazed tiles". 李明仲營造法式: 36卷 (in Chinese). OCLC 975239953.
  28. ^ "onigawara 鬼瓦." JAANUS. Retrieved on June 12, 2009.
  29. ^ Hall, Emma Doddrell. "Discovering The History Of Traditional Korean Roof Tiles". koreanrooftop.com. Korean Rooftop. Retrieved 24 September 2023.
  30. ^ Amalananda Ghosh (ed.). "Excavations at Alamgirpur". Indian Archaeology, A Review (1958-1959). Delhi: Archaeological Survey of India. pp. 51–52.
  31. ^ a b c Uesugi, Akinori; Oya, Hiroshi; Peter, Jenee (2020). "Roof Tiles in Ancient South Asia: Its Developments and Significance". Center for Cultural Resource Studies, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa.
  32. ^ Loud, John Alden (1990). The Dīkṣitars of Chidambaram: A Community of Ritual Specialists in a South Indian Temple. University of Wisconsin--Madison. p. 23.
  33. ^ a b Nishimura, Masanari. "The roof tiles in the later period of Champa: a consideration for its origin and diffusion" (PDF). Kansai University Institutional Repository.
  34. ^ Pujiyanto, Eko; Nur Rosyidi, Cucuk; Hamka Ibrahim, Muhammad; Budiaji, Ariawan (2022). "Meningkatkan Kualitas Genteng Hasil Produksi IKM Kebakkramat Karanganyar untuk Memenuhi SNI 03-2095-1998". Jurnal Pengabdian Masyarakat Indonesia. 2: 25–31. doi:10.52436/1.jpmi.415.
  35. ^ Idham, Noor Cholis (2018). "Javanese vernacular architecture and environmental synchronization based on the regional diversity of Joglo and Limasan". Frontiers of Architectural Research. 7 (3): 317–333. doi:10.1016/j.foar.2018.06.006.
  36. ^ "The many uses of Beema bamboo". Agriculture Magazine. 15 August 2021. Retrieved 9 April 2025.
  37. ^ Martinez, Glenn. "Here's A Complete List Of The 46 Parts of A Filipino House". RealLiving. Retrieved 2 September 2024.
  38. ^ Worcester, Wolsey Garnet (1910). texts The Manufacture of Roofing Tiles. Springfield, Ohio: Springfield Publishing Company. p. 13.
  39. ^ Anne E. Grimmer; Paul K. Williams (1993). "The Preservation and Repair of Historic Clay Tile Roofs" (PDF). Preservation Briefs. National Park Service: 1–4.
  40. ^ Anne E. Grimmer; Paul K. Williams (1993). "The Preservation and Repair of Historic Clay Tile Roofs" (PDF). Preservation Briefs. National Park Service: 3.
  41. ^ a b c d e f g Müller, Wolf-Manfred (2011). Die Falzziegelwerke Carl Ludowici und ihr Ziegelangebot von 1857 bis 1914/1917. Mainz, Germany: Institut für Steinkonservierung e. V. (IFS). ISSN 0945-4748.
  42. ^ Varman, Robert (2006). "The Marseille or French pattern tile in Australia" (PDF). The Australian Society for Historical Archaeology. Retrieved 24 September 2023.
  43. ^ a b R.V.J. Varman (2006). "The Marseilles or French Pattern Tile in Australia" (PDF). Australian Society for Historical Archaeology.
  44. ^ "A New Church". paperspast.natlib.govt.nz. New Zealand Times. 17 July 1899. Retrieved 2023-05-07.
  45. ^ "Kaiwarra Station". paperspast.natlib.govt.nz. New Zealand Times. 11 October 1901. Retrieved 2023-05-07.
  46. ^ "The New Dunedin Railway Station". paperspast.natlib.govt.nz. Evening Star. 14 November 1900. Retrieved 2023-05-07.
  47. ^ "historique gilardoni". patrimoineindustriel-apic.com. Retrieved 2023-05-07.
  48. ^ "Otago Witness". paperspast.natlib.govt.nz. 15 October 1929. Retrieved 2023-05-07.
  49. ^ "New Zealand Goods". paperspast.natlib.govt.nz. Dominion. 28 October 1921. Retrieved 2023-05-07.
  50. ^ "The Red Clay Rooves [sic] Of Timaru". Civic Trust. 13 November 2019. Retrieved 2023-05-07.
  51. ^ "Marseille Clay Roof Tile". Macmillan Slaters and Tilers Ltd. Retrieved 2023-05-07.
  52. ^ Brunner, Jan. "Falzziegelwerk Carl Ludowici". Institut für Geschichtliche Landeskunde. Retrieved 28 March 2023.
  53. ^ "Tracing the history and legacy of Mangalore tiles". Architectural Digest India. 2022-05-22. Retrieved 2023-08-31.
  54. ^ Artistic Roofing Tiles. Alfred, NY: Celadon Roofing Tile Company. 1899. pp. 48–49. Retrieved 28 March 2023.
  55. ^ Clawson, Cortez (1926). History of the Town of Alfred, New York from the Earliest Times to the Present (PDF). Alfred, New York: Sun Publishing Association. pp. 72–73. Retrieved 28 March 2023.
  56. ^ Dobson, Charles (1959). The History of the Concrete Roofing Tile. Its Origins and Development in Germany. London, England: B.T. Batsford.
  57. ^ "Concrete Roofing Tile". Roofing for Historic Buildings. National Park Service. 10 April 2001. Retrieved 25 September 2023.
  58. ^ Worcester, Wolsey Garnet (1910). The Manufacture of Roofing Tiles. Springfield, Ohio: Springfield Publishing Co. p. 28.
  59. ^ Farhan, Syed Ahmad; Ismail, Fouad Ismail; Kiwan, Osamah; Shafiq, Nasir; Zain-Ahmed, Azni; Husna, Nadzhratul; Hamid, Afif Izwan Abd (2021). "Effect of Roof Tile Colour on Heat Conduction Transfer, Roof-Top Surface Temperature and Cooling Load in Modern Residential Buildings under the Tropical Climate of Malaysia". Sustainability. 13 (9): 4665. Bibcode:2021Sust...13.4665F. doi:10.3390/su13094665.
  60. ^ McDonald, Martha (July 24, 2015). "Restoration of the King Street Station in Seattle". Traditional Building.
  61. ^ "Company History". DaVinci Roofscapes. Retrieved 25 September 2023.
  62. ^ a b Theriault, Melanie (21 June 2021). "Everything You Need to Know About Synthetic Roofing". New Home Source. Builders Digital Experience, LLC.
  63. ^ a b Mumtaz Ahmad; Mohammad Waseem (2021). "Effects of injection molding parameters on cellular structure of roofing tiles composite". Materials Today: Proceedings. 36: 701–707. doi:10.1016/j.matpr.2020.04.751. S2CID 219923628.
  64. ^ Becker, Rachel (29 October 2016). "Check out Tesla's four different glass solar roofs". The Verge.
  65. ^ "Tesla's trumpeted solar shingles are a flop". MIT Technology Review. Retrieved 2023-07-12.
  66. ^ Lambert, Fred (October 18, 2021). "Tesla drops claim that solar roof tiles are '3x stronger than standard tiles'". Electrek. 9to5. Retrieved 30 September 2023.
  67. ^ "How to fix ridge tiles". Roofing Superstore Help & Advice. Retrieved 29 September 2023.
  68. ^ Chisholm, Hugh, ed. (1911). "Ante-fixae" . Encyclopædia Britannica. Vol. 2 (11th ed.). Cambridge University Press. p. 89.
  69. ^ Mazzuca, John (February 14, 2021). "Concrete Vs Clay Tile Roof". gambrick.com. Gambrick Construction.
  70. ^ Newcomb, Rachel (June 30, 2023). "Clay Tile Roofing Guide". Condé Nast. Architectural Digest.
  71. ^ a b "Concrete Tile Roof Cost: Boral & Eagle Roofing Tiles Pricing". Roofing Calculator. Roofing Calculator Inc. July 30, 2023.
  72. ^ "Are DaVinci Polymer Roof Tiles Color Stable?". davinciroofscapes.com. Westlake DaVinci Roofscapes, LLC. 15 December 2009.
  73. ^ Taylor, Rod (January 23, 2021). "Why does plastic become brittle as it ages?". The Canberra Times.
  74. ^ "Efflorescence on Roofing Tiles" (PDF). tileroofing.com. Tile Roofing Industry Alliance. Retrieved 9 October 2023.
  75. ^ William Carty; Hyojin Lee (August 16, 2017). "Ceramics for Exterior Applications & A Discussion of Heat Transfer and Storage" (PDF). Boston Valley Terra Cotta.
  76. ^ "Does Saltwater Effect Roof Tiles?". Vivify Roofing. July 2, 2021. Retrieved 5 October 2023.
  77. ^ "Why Ludowici". ludowici.com. Ludowici Roof Tile, LLC. Retrieved 5 October 2023.
  78. ^ Worcester, Wolsey Garnett (1910). The Manufacture of Roofing Tile. Springfield, Ohio: Springfield Publishing Company. p. 28.
  79. ^ William Carty; Hyojin Lee (August 16, 2017). "Ceramics for Exterior Applications & A Discussion of Heat Transfer and Storage" (PDF). Boston Valley Terra Cotta.
  80. ^ "Breaking Strength". ludowici.com. Ludowici. Retrieved 9 October 2023.
  81. ^ "Low Temperature Properties of Polymers" (PDF). Zeus Industrial Products, Inc.
  82. ^ Worcester, Wolsey Garnett (1910). The Manufacture of Roofing Tile. Springfield, Ohio: Springfield Publishing Company. pp. 27–28, 93–94.
  83. ^ King, Hobart M. "Slate". geology.com.
  84. ^ "Simple Facts about your Concrete Tile Roof" (PDF). eagleroofing.com. Eagle Roofing Products. 2015.
  85. ^ Frost, Shelley (30 December 2021). "Synthetic Slate Roof Shingles: A Cost and Buyer's Guide". Hunker. Leafgroup LTD.
[edit]

 

Rooftop PV systems around the world: Bensheim, Germany (top-left), Berlin, Germany (top-right), Kuppam, India (bottom-left), Greencap Energy solar array on Eton College, United Kingdom (bottom-right)

A rooftop solar power system, or rooftop PV system, is a photovoltaic (PV) system that has its electricity-generating solar panels mounted on the rooftop of a residential or commercial building or structure.[1] The various components of such a system include photovoltaic modules, mounting systems, cables, solar inverters battery storage systems, charge controllers, monitoring systems, racking and mounting systems, energy management systems, net metering systems, disconnect switches, grounding equipment, protective devices, combiner boxes, weatherproof enclosures and other electrical accessories.[2]

Rooftop mounted systems are small compared to utility-scale solar ground-mounted photovoltaic power stations with capacities in the megawatt range, hence being a form of distributed generation. A comprehensive life cycle analysis study[3] showed that rooftop solar is better for the environment than utility-scale solar.[4] Most rooftop PV stations are Grid-connected photovoltaic power systems. Rooftop PV systems on residential buildings typically feature a capacity of about 5–20 kilowatts (kW), while those mounted on commercial buildings often reach 100 kilowatts to 1 megawatt (MW). Very large roofs can house industrial scale PV systems in the range of 1–10 MW.

As of 2022, around 25 million households rely on rooftop solar power worldwide.[5] Australia has by far the most rooftop solar capacity per capita.[6]

Installation

[edit]
Workers install residential rooftop solar panels
Rooftop PV systems at Googleplex, California

The urban environment provides a large amount of empty rooftop spaces and can inherently avoid the potential land use and environmental concerns. Estimating rooftop solar insolation is a multi-faceted process, as insolation values in rooftops are impacted by the following:

  • Time of the year
  • Latitude
  • Weather conditions
  • Roof slope
  • Roof aspect
  • Shading from adjacent buildings and vegetation[7]

There are various methods for calculating potential solar PV roof systems including the use of lidar[8] and orthophotos.[9] Sophisticated models can even determine shading losses over large areas for PV deployment at the municipal level.[10]

Components of a rooftop solar array

[edit]

The following section contains the most commonly utilized components of a rooftop solar array. Though designs may vary with roof type (e.g. metal vs shingle), roof angle, and shading concerns, most arrays consist of some variation of the following components

  1. Solar panels produce carbon free electricity when irradiated with sunlight. Often made of silicon, solar panels are made of smaller solar cells which typically have six cells per panel. Multiple solar panels strung together make up a solar array. Solar panels are generally protected by tempered glass and secured with an aluminum frame.[11] The front of a solar panel is very durable whereas the back of a panel is generally more vulnerable.
  2. Mounting clamps generally consist of aluminum brackets and stainless steel bolts that secure solar panels to one another on the roof and onto the rails. Clamps often vary in design in order to account for various roof and rail configurations.[12]
  3. Racking or rails are made of metal and often lie in a parallel configuration on the roof for the panels to lie on. It is important that the rails are level enough for the panels to be evenly mounted.[13]
  4. Mounts attach the rails and the entire array to the surface of the roof. These mounts are often L brackets that are bolted through flashing and into the rafters of the roof. Mounts vary in design due to the wide range of roof configurations and materials.[12]
  5. Flashings are a durable metal plate that provide a water resistant seal between the mounts and roof surface. Oftentimes, caulk is used to seal the flashing to the roof and it resembles a metal roof shingle.
  6. DC/AC wiring for inverters connect wires between panels and into a micro inverter or string inverter.[13] No cables should touch the roof surface or hang from the array to avoid weathering and the deterioration of cables.
  7. Micro inverters are mounted to the bottom of the panel and convert DC power from the panels into AC power that can be sent into the grid. Micro inverters allow for the optimization of each panel when shading occurs and can provide specific data from individual panels.[13]

Finances

[edit]

PV system prices (2022)

[edit]

[needs update][citation needed]

Residential
Country Cost ($/W)
Australia 1.0
China 0.8
France 1.1
Germany 1.2
India 1.0
Italy 1.3
Japan 1.2
Pakistan 0.6
United Kingdom 1.2
United States 1.1
Commercial
Country Cost ($/W)
Australia 0.85
China 0.64
France 0.9
Germany 0.9
India 0.75
Italy 0.9
Japan 0.95
United Kingdom 1.0
United States 1.0
 

Incentives

[edit]

United States

[edit]

Solar incentives by state in the USA can help offset the initial cost of installation and make solar power more affordable. In the United States, each state has its own set of incentives and rebates for solar energy, including tax returns, tax credits and net metering for grid connected solar power systems.[14]

[edit]

In the mid-2000s, solar companies used various financing plans for customers such as leases and power purchase agreements. Customers could pay for their solar panels over a span of years, and get help with payments from credits from net metering programs. As of May 2017, installation of a rooftop solar system costs an average of $20,000. In the past, it had been more expensive.[15]

Utility Dive wrote, "For most people, adding a solar system on top of other bills and priorities is a luxury" and "rooftop solar companies by and large cater to the wealthier portions of the American population."[15] Most households that get solar arrays are "upper middle-income". The average household salary for solar customers is around $100,000.[15] However, "a surprising number of low-income" customers appeared in a study of income and solar system purchases. "Based on the findings of the study, GTM researchers estimate that the four solar markets include more than 100,000 installations at low-income properties."[15]

A report released in June 2018 by the Consumer Energy Alliance that analyzed U.S. solar incentives, showed that a combination of federal, state and local incentives, along with the declining net cost of installing PV systems, has caused a greater usage of rooftop solar across the nation. According to Daily Energy Insider, "In 2016, residential solar PV capacity grew 20 percent over the prior year, the report said. The average installed cost of residential solar, meanwhile, dropped 21 percent to $2.84 per watt-dc in the first quarter of 2017 versus first quarter 2015."[16] In fact, in eight states the group studied, the total government incentives for installing a rooftop solar PV system actually exceeded the cost of doing so.[16]

In 2019, the national average cost in the United States, after tax credits, for a 6 kW residential system was $2.99/W, with a typical range of $2.58 to $3.38.[17]

Due to economies of scale, industrial-sized ground-mounted solar systems produce power at half the cost (2 c/kWh) of small roof-mounted systems (4 c/kWh).[18]

Feed-in tariff mechanism

[edit]

In a grid connected rooftop photovoltaic power station, the generated electricity can sometimes be sold to the servicing electric utility for use elsewhere in the grid. This arrangement provides payback for the investment of the installer. Many consumers from across the world are switching to this mechanism owing to the revenue yielded. A public utility commission usually sets the rate that the utility pays for this electricity, which could be at the retail rate or the lower wholesale rate, greatly affecting solar power payback and installation demand.

The FIT as it is commonly known has led to an expansion in the solar PV industry worldwide. Thousands of jobs have been created through this form of subsidy. However, it can produce a bubble effect which can burst when the FIT is removed. It has also increased the ability for localized production and embedded generation reducing transmission losses through power lines.[2]

Solar shingles

[edit]
Solar shingle

Solar shingles or photovoltaic shingles, are solar panels designed to look like and function as conventional roofing materials, such as asphalt shingle or slate, while also producing electricity. Solar shingles are a type of solar energy solution known as building-integrated photovoltaics (BIPV).[19]

Hybrid systems

[edit]
Rooftop PV hybrid system.

A rooftop photovoltaic power station (either on-grid or off-grid) can be used in conjunction with other power components like diesel generators, wind turbines, batteries etc. These solar hybrid power systems may be capable of providing a continuous source of power.[2]

Advantages

[edit]

Installers have the right to feed solar electricity into the public grid and hence receive a reasonable premium tariff per generated kWh reflecting the benefits of solar electricity to compensate for the current extra costs of PV electricity.[2]

For consumers, a solar PV system can help them reduce their reliance on fossil fuels by using the sun’s free energy to produce electricity that they can use in their home. Solar PV can therefore help homeowners lower their carbon footprints as well as saving money with their utility bills.[20]

Disadvantages

[edit]

An electrical power system containing a 10% contribution from PV stations would require a 2.5% increase in load-frequency control (LFC) capacity over a conventional system[jargon]—an issue which may be countered by using synchronverters in the DC/AC-circuit of the PV system. The break-even cost for PV power generation was in 1996 found to be relatively high for contribution levels of less than 10%. While higher proportions of PV power generation give lower break-even costs, economic and LFC considerations impose an upper limit of about 10% on PV contributions to the overall power systems.[21]

Taking solar panels down to replace shingle roof

[edit]
Rooftop solar on asphalt shingles

When replacing the asphalt shingle roof the solar panels will need to be uninstalled and taken down to re-shingle the roof and reinstalled after the re-shingling of the roof. Power outages could happen at the house during that time. Solar panel installers would have to come out twice to do the uninstall and re-install at a later date when the roof is finished, and their labor is typically more expensive than asphalt shingle roofers pay rate.[22]

Technical challenges

[edit]

There are many technical challenges to integrating large amounts of rooftop PV systems to the power grid.

Reverse power flow

[edit]
The electric power grid was not designed for two way power flow at the distribution level. Distribution feeders are usually designed as a radial system for one way power flow transmitted over long distances from large centralized generators to customer loads at the end of the distribution feeder. With localized and distributed solar PV generation on rooftops, reverse flow causes power to flow to the substation and transformer, causing significant challenges. This has adverse effects on protection coordination and voltage regulators.

Ramp rates

[edit]
Rapid fluctuations of generation from PV systems due to intermittent clouds cause undesirable levels of voltage variability in the distribution feeder. At high penetration of rooftop PV, this voltage variability reduces the stability of the grid due to transient imbalance in load and generation and causes voltage and frequency to exceed set limits if not countered by power controls. That is, the centralized generators cannot ramp fast enough to match the variability of the PV systems causing frequency mismatch in the nearby system. This could lead to blackouts. This is an example of how a simple localized rooftop PV system can affect the larger power grid. The issue is partially mitigated by distributing solar panels over a wide area, and by adding storage.

Operation and maintenance

[edit]
Rooftop PV solar operation and maintenance is of higher costs in comparison with ground-based facilities due to the distributed nature of rooftop facilities and harder access. In rooftop solar systems it typically takes a longer time to identify a malfunction and send a technician, due to lower availability of sufficient photovoltaic system performance monitoring tools and higher costs of human labor. As a result, rooftop solar PV systems typically suffer from lower quality of operation & maintenance and essentially lower levels of system availability and energy output.

Thin film solar on metal roofs

[edit]

With the increasing efficiencies of thin film solar, installing them on metal roofs has become cost competitive with traditional monocrystalline and polycrystalline solar cells. The thin film panels are flexible and run down the standing seam metal roofs and stick to the metal roof with adhesive, so no holes are needed to install. The connection wires run under the ridge cap at the top of the roof. Efficiency ranges from 10–18% but only costs about $2.00–$3.00 per watt of installed capacity, compared to monocrystalline which is 17–22% efficient and costs $3.00–$3.50 per watt of installed capacity. Thin film solar is light weight at 7–10 ounces per square foot. Thin film solar panels last 10–20 years[23] but have a quicker ROI than traditional solar panels, the metal roofs last 40–70 years before replacement compared to 12–20 years for an asphalt shingle roof.[24][25]

Cost of Different Solar Roof Types
Type[26] Cost per watt Efficiency Average 6 kW system cost
Polycrystalline $2.80–$3.00 13–17% $17,400
Monocrystalline $3.00–$3.50 17–22% $19,000
Thin film panels $2.00–$3.00 10–18% $17,000

Largest rooftop solar installations

[edit]
Rooftop photovoltaic power stations (10 MW and larger)
PV power station Location Country Nominal Power[27]

(MWp)

Notes
Jining Huaxi Shandong China 120 Spanned across 43 rooftops with total capacity of 110 GWh/year[28]
LaiYih Group Vinh Long Vietnam 38 Rooftop of footwear manufacturing facility[29][30]
Prologis Redlands Distribution Center Redlands, California United States 28 A series of installations on several rooftops at Prologis Redlands Distribution Center from November 2010 to August 2013 ranging from 1.75 MW to 6.77 MW[31]
Mai Dubai Bottling Plant Dubai United Arab Emirates 18 52,000 solar modules, completed Summer of 2019[32]
AG Heylen Energy Venlo Netherlands 18 This project at Venlo consists of over 48,000 solar modules, and over 100 inverters. 126,000 square meter of roofs is used.[33] Installation completed in August 2020.[34]
Apple Park Cupertino, California United States 17 Approx 10 MW on main building and 7 MW on two parking structures[35]
Arvind Limited Santej India 16 This is the largest solar rooftop plant in India at single industrial premises. This project at Santej consists of over 46,000 solar modules, and over 180 inverters. More than 20,000 man-days were spent in installing this landmark and over 40,000 square meter of old roofs were replaced to make way for this plant.[36]
Warehouse by Permacity / LADWP Los Angeles, California United States 16 [37]
General Motors Zaragoza Spain 12 Installed at General Motors Spanish Zaragoza Manufacturing Plant in fall 2008[38][39]
Dera Baba Jaimal Singh, Beas   India 12 Solar power plant spread over 42-acre rooftop[40]
Riverside Renewable Energy – Holt Logistics Gloucester Marine Terminal Gloucester City, New Jersey United States 10 Three refrigerated warehouse buildings. Completed April 2012 with 9 MW,[41][42] expanded in 2019.[43]
Southern California Edison-Whirlpool Corporation Regional Distribution Center Perris, California United States 10 Installed on rooftop of Whirlpool Corporation Regional Distribution Center Sept. 19, 2011[44]

See also

[edit]

References

[edit]
  1. ^ Armstrong, Robert (12 November 2014). "The Case for Solar Energy Parking Lots". Absolute Steel. Archived from the original on 2014-11-27. Retrieved 15 November 2014.
  2. ^ a b c d "Solar Photovoltaic System Design Basics". energy.gov. Retrieved 2024-08-20.
  3. ^ Roy, Riya; Pearce, Joshua M. (2024-03-01). "Is small or big solar better for the environment? Comparative life cycle assessment of solar photovoltaic rooftop vs. ground-mounted systems". The International Journal of Life Cycle Assessment. 29 (3): 516–536. doi:10.1007/s11367-023-02254-x. ISSN 1614-7502.
  4. ^ "Small-scale solar best for environment but agrivoltaics may be the answer". pv magazine USA. 2024-01-12. Retrieved 2024-09-19.
  5. ^ "Approximately 100 million households rely on rooftop solar PV by 2030". International Energy Agency. 2022. Retrieved April 7, 2024.
  6. ^ Chandak, Pooja (2022-03-21). "Global Rooftop Solar Installations To Almost Double By 2025, Says Report". SolarQuarter. Retrieved 2024-04-07.
  7. ^ "Insolation". energyeducation.ca. Retrieved 2024-08-20.
  8. ^ Ha T. Nguyen, Joshua M. Pearce, Rob Harrap, and Gerald Barber, "The Application of LiDAR to Assessment of Rooftop Solar Photovoltaic Deployment Potential on a Municipal District Unit", Sensors, 12, pp. 4534-4558 (2012).
  9. ^ L.K. Wiginton, H. T. Nguyen, J.M. Pearce, "Quantifying Solar Photovoltaic Potential on a Large Scale for Renewable Energy Regional Policy", Computers, Environment and Urban Systems 34, (2010) pp. 345-357. [1]Open access
  10. ^ Nguyen, Ha T.; Pearce, Joshua M. (2012). "Incorporating shading losses in solar photovoltaic potential assessment at the municipal scale". Solar Energy. 86 (5): 1245–1260. Bibcode:2012SoEn...86.1245N. doi:10.1016/j.solener.2012.01.017. S2CID 15435496.
  11. ^ "Module Structure | PVEducation". www.pveducation.org. Retrieved 2019-05-08.
  12. ^ a b "Solar Panel Racking for Roof and Ground Mount Solar". unboundsolar.com. Retrieved 2019-05-08.
  13. ^ a b c "Anatomy Of A Rooftop Solar Mounting System". Solar Power World. 2014-03-19. Retrieved 2019-05-08.
  14. ^ "Compact guide to solar incentives by state in the USA". 2023-02-07.
  15. ^ a b c d Shallenberger, Krysti (2017-04-27). "Is rooftop solar just a toy for the wealthy?". Utility Dive. Retrieved 2017-05-05.
  16. ^ a b Galford, Chris (2018-06-14). "Government incentives for rooftop solar often greater than system's total cost, CEA report finds". Daily Energy Insider. Retrieved 2018-07-04.
  17. ^ "How much do solar panels cost in the U.S. in 2018?". energysage. Archived from the original on 2022-12-27. Retrieved 20 August 2024.
  18. ^ Fox-Penner, Boston University, Peter (19 May 2020). Power after carbon : building a clean, resilient grid. Harvard University Press. pp. 52–53. ISBN 9780674241077.
  19. ^ "Should You Buy Solar Shingles? (2023 Guide)".
  20. ^ "Solar panels". Energy Saving Trust. Retrieved 2024-06-18.
  21. ^ Asano, H.; Yajima, K.; Kaya, Y. (Mar 1996). "Influence of photovoltaic power generation on required capacity for load frequency control". IEEE Transactions on Energy Conversion. 11 (1): 188–193. Bibcode:1996ITEnC..11..188A. doi:10.1109/60.486595. ISSN 0885-8969.
  22. ^ "Understanding Roofing Project Timelines: What to Expect from Start to Finish". Retrieved 20 August 2024.
  23. ^ "Thin-Film Solar Panels | American Solar Energy Society".
  24. ^ "Pros and Cons of Metal Roofs for Your Home".
  25. ^ "Solar Panels vs. Thin-Film Laminates: Costs, Pros & Cons, Top Brands". 19 January 2022.
  26. ^ "Solar Panels vs. Thin-Film Laminates: Costs, Pros & Cons, Top Brands". 19 January 2022.
  27. ^ Note that nominal power may be AC or DC, depending on the plant. See AC-DC conundrum: Latest PV power-plant ratings follies put focus on reporting inconsistency (update) Archived 2011-01-19 at the Wayback Machine
  28. ^ "Sungrow Supplies Inverters to 120 MW C&I Rooftop PV Plant". www.saurenergy.com. 22 July 2021.
  29. ^ "Taiwanese footwear producer ties up Vietnamese company for renewable energy solutions". Viet Nam News. 26 January 2021. Retrieved 6 November 2022.
  30. ^ "LAIYIH GROUP". indefol. Retrieved 6 November 2022.
  31. ^ "SEIA Solar Means Business: 2016 Edition Full Data". seia.org. Solar Energy Industries Association. Retrieved 6 November 2022.
  32. ^ "Mai Dubai solar installations produce more than 30 million kWh of power in 2020". Utilities Middle East. 11 February 2021. Retrieved 6 November 2022.
  33. ^ "Most Powerful Solarroof". Heylen Energy. Archived from the original on 2020-10-21. Retrieved 20 August 2024.
  34. ^ "Installation Completed of the World's Most Powerful Solar Roof Currently Operating at PVH Europe's State-of-the-Art Warehouse and Logistics Center". 6 October 2020.
  35. ^ "New Apple Headquarters Sets Records in Solar and Green Building". www.renewableenergyworld.com. 2017-03-03. Archived from the original on 2017-06-25. Retrieved 2017-05-09.
  36. ^ "Arvind unveils India's largest rooftop solar project at 16.2 MW". Construction Week India. 13 February 2019. Retrieved 2019-05-17.
  37. ^ 50-acre solar rooftop installation up and running in San Pedro, Curbed, Los Angeles, June 26, 2017
  38. ^ Uni-Solar Corporate Overview Brochure
  39. ^ GM installs world's biggest rooftop solar panels
  40. ^ ‘World’s largest’ single rooftop solar plant opened at Beas dera, Hindustan Times, May 18, 2016
  41. ^ Largest Rooftop Solar Power Plant in North America Formally Completed
  42. ^ Riverside Renewable Energy LLC |archive-url=https://web.archive.org/web/20120421032647/http://greenprofiler.com/epp/riverside-renewable-energy-llc/http://greenprofiler.com/epp/riverside-renewable-energy-llc |archive-date=2012-04-21 |url-status=dead
  43. ^ "Holt Logistics Adds Additional Capacity to Groundbreaking 2011 Solar Installation at NJ's Gloucester Marine Terminal". Independence Solar. 2019-07-16. Retrieved 2022-03-02.
  44. ^ City of Perris solar panels |archive-url=https://web.archive.org/web/20190412030109/https://www.cityofperris.org/news/2011_stories/09-19-11_solarpanels.html/https://www.cityofperris.org/news/2011_stories/09-19-11_solarpanels.html |archive-date=2019-04-12 |url-status=dead